If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+4y-4=0
a = 2; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·2·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3}}{2*2}=\frac{-4-4\sqrt{3}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3}}{2*2}=\frac{-4+4\sqrt{3}}{4} $
| z/8=8 | | -7=2(n-7)-9 | | y=372000(1+0.05)^8 | | -8q=-7q-4 | | 5(5x-3)=8x-6(2+6x) | | 2r^2=162 | | A+1=3-2a-2-4a | | .3x=1.8 | | 4x+1=5x+10 | | 1y-11=25-3y | | h-10=113 | | m+7=12-5m+m | | 4x-8+45+180-7x-1=180 | | 4+⅕r=-1 | | -155=-5(6n-5) | | v-1=2v-8 | | 5=s+5/3 | | 1-3p=-2p+7 | | x-3.8= 1.7 | | y+22/5=54/5 | | 3x+10=90° | | (2+3x)(1-5x)=0 | | 5+2e=17 | | 5x+6=2(3x+1) | | (x+4)*(x+2)=2*(x+10) | | 2n-1=-1+4n | | .50x-5=5 | | -9=-3(b-3)+6(6-4b) | | -5x+2(-2-6x)=-89 | | -6y-3y=54 | | 1x4=-3 | | .x2-5x+4=0 |